US009223793B1

a2 United States Patent

Mahalingam et al.

US 9,223,793 B1
Dec. 29, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(60)

(1)
(52)

(58)

DE-DUPLICATION OF FILES FOR
CONTINUOUS DATA PROTECTION WITH
REMOTE STORAGE

Inventors: Anandh Mahalingam, Fremont, CA
(US); Narayanaswami Ganapathy,
Newark, CA (US); Senthilkumar
Ramasamy, Vriddhaehalam (IN)

Assignee: American Megatrends, Inc., Norcross,
GA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 918 days.

Appl. No.: 12/793,178

Filed: Jun. 3,2010

Related U.S. Application Data

Provisional application No. 61/183,746, filed on Jun.
3, 2009.

Int. Cl1.

GO6F 17/30 (2006.01)

U.S. CL

CPC . GO6F 17/30156 (2013.01)

Field of Classification Search

CPC GOGF 3/0641; GOGF 11/1453; GOGF
17/30153
USPC i 707/695

See application file for complete search history.

DE-DUPE NEW VERSION OF DATAFILE
AGAINST MASTER FILE
(FROM OPERATION 502 - FIGURE 6)

C y

| INITIALIZE CURRENT OFFSET TQ ZERQ _-I
I

(56) References Cited
U.S. PATENT DOCUMENTS
5,394,534 A * 2/1995 Kulakowskietal. 711/112
5,574,906 A * 11/1996 Morris 707/640
5,774,715 A * 6/1998 Madany etal.ccccccoevee /1
7,149,812 B2* 12/2006 McCartney et al. ... 709/247
8,135,683 B2* 3/2012 Douglis et al. 707/693
8,321,648 B2* 112012 Condictccoevvevevrennee 711/170
2005/0131939 Al* 6/2005 Douglis et al. . 707/103Y
2005/0165760 AL™ 7/2005 S€0 ..ccceovvviviiiriiiinrieennn 707/3
2006/0230076 Al* 10/2006 Gounares et al. 707/200
2009/0307247 Al* 12/2009 Pollack 707/101
2012/0219233 Al* 82012 Uroetal.cccoevnnnee 382/239

* cited by examiner

Primary Examiner — James Truyjillo
Assistant Examiner — Kurt Mueller

(74) Attorney, Agent, or Firm — Meunier Carlin & Curfman
LLC

57 ABSTRACT

Technologies are described herein for performing data de-
duplication of a version of a data file for backup to a remote
storage location. A CDP module executing on a computer
creates a collection of files corresponding to the version of the
data file by de-duplicating the version against a previous
version master file stored locally on the computer. The pre-
vious version master file contains one or more unique data
blocks of a specific block size from a previous version of the
data file. Once the de-duplication against the locally main-
tained previous version master file is complete, the CDP
module stores the collection of files corresponding to the
version of the data file to the remote storage location. The
remote storage location also contains a master file corre-
sponding to the data file that contains all of the unique data
blocks in the previous version master file.

15 Claims, 13 Drawing Sheets

704
READ DATA BLOCK FROM DATA FILE AT
CURRENT QFFSET

706
FULL DATA BLOCK READ?
708

CALCULATE LIGHTWEIGHT CHECKSUM FOR
READ DATA BLOCK (BY ADD-ON-CARRY)

710
SEARCH LIGHTWEIGHT CHECKSUNS IN
MASTER FILE FOR MATCHING CHECKSUM

712 NTIAL

ATCHING BLOCK iN MASTER.
FLE?

YES

NO

INCREASE CURRENT OFFSET BY
SLIDE SIZE

740
APPEND PARTIAL DATABLOCK TO
NEW SUPPLEMENTAL FRE
742
APPEND SUPPLEMENTAL BLOCK

REFERENCE FOR PARTIAL DATA
BLOCK TO NEW VERSION MAP FILE

718

CREATE NEW MASTER BLOCK WITH
SKIPPED BLOCK OF DATA IN NEW

VERSION MASTER FILE

APPEND MASTER BLOCK

REFERENCE FOR NEW MASTER
BLOCK TO NEW VERSION MAP FILE

U.S. Patent

Dec. 29, 2015 Sheet 1 of 13 US 9,223,793 B1

USER COMPUTER 102
cop
LOCAL APPLICATIONS 104 CONFIG.
SETTINGS
OPERATING SYSTEM 106 118
i 116
FILE I T
SYSTEM Baggugndo S
| H LOCAL STORAGE
i 120
_______é—-—"‘/ o e
STORAGE VOLUME | FILE SYSTEM P2 | 1284
110 (READ-ONLY) + | GDP MODULE T Nl
W’] 108
\M___———/’}
L
NETWORK
126
i
|
|
!
! r/—-"—'—“‘\\
! e —
| REMOTE STORAGE
i 122 4288
! Y
100 b——

REMOTE STORAGE SYSTEM mw

FIG. 1

US 9,223,793 B1

Sheet 2 of 13

Dec. 29, 2015

U.S. Patent

T4 ¥31SWW
aa N~gzzz
(% NOISNIA) 90 y~ozzz
T4 WININT NS T
W e
\ Yo Newzzz

0ZZ
0 NOISHIA)
T v NOISHIA
¢ 1 d~dzi2
v | WN-gzie
b WNgzez
£ q,&f)nuNhN
< | WN~gziz
L Ef\)ﬂ\NwN
voLz
Zer
FOVHOLS FLOWEY

(X NOISYIA)
T4 H3LSWN NOISHIA
ud N~gzez
92 “yozez
88 “r~gzzz
W N~wyezz
vrzz
{x MOISHIA
T4 VN NOISHIA
&1 Oy~g212
v | WN~gze2
b N~gziz
b | WN~oziz
¢ | WN~gz1z
AN 74 T4
voiLz
01
FHVHOLS W00

£ NOISHIN)

T4 INFANOOG
3715 99018 >4 Pyroz
a0 “rgeoz
YW azoz
20 Mooz
8d “gz0z
215 MO0 nA [0 o 74174

804
11
NNI0A FOVHOLS

US 9,223,793 B1

Sheet 3 of 13

Dec. 29, 2015

U.S. Patent

{1+X NOISH3A) 90t ¥ot (X NOISHIA)
4 ¥ILSYA NOISHEA N f U4 HE LSV NOISHIA
Im™ 7 _ “
] { FEITYRGX0 2 ad “~qgzzz
i
“ u O0L64D34%0 6L 30 Nrozez
i
“ u VACEVEEAXD iy a4 N~grze
“ W SLEECOROXD 7 YW N~yzzz
\u T ZE0¥D. LH0X w
arzz wyze
(14X NOISHIA) X NOISHIA
T YN NOISHIA T JYI NOISHIA
F—™ o

A ¢ | ON~y212

(4% NOISHIN) m w | v | WN~g2s2

I WININTIddNS }] b Wz

re Lol ¢ | Woziz

| " M e M ¢ | Wygziz

fe M AN A 4

arie g0iz voLZ
0zt
FOVHOLS VOO

() + X NOISHIA)

T4 ININNOOG
ad “zzoz
Yavoz
3 Ndzoz
20 Nozoz
Yowoz
59 “ygzoz
Nol } gvoz
80+
oIt
NIOA IDVHOLS

US 9,223,793 B1

Sheet 4 of 13

Dec. 29, 2015

U.S. Patent

(14X NOISMIA) 908 yot 0 NOISHIA)
T4 HILSYIN NOISHIA L 3T 431V NOISHIA
1™) _
| { FEIOIYE0%0 Lz ag ~N~gezz
| i
] { DGLBLDD4X0 6t 30 ~azez
| i
i w VAZOVPEAXG i 88 ~N~gzzez
“ W £LBEE0HOXD zE ¥ N~yzzz
\M T ZE0M0. |1 H0X >
arzz 4 A4
{1+X NOISHEA) (X NOISHIA)
T4 YW NOISHIA T4 VN NOISHIA
r Ws a1 § 1 ON~gz12
. ; { m v 1 g~
(14X NOISHIA) b E43
N4 WANINTTddNS I m t b Wy~aziz
m. I | | | £ WMoz
| _ " m M ¢ | W~gziz
b o R P AN o 7474
griz g01z voiz
el
JOVH0LS WO

{L+ X NOISHIA)
I ININNT0T

ad “rgzoe
Yavoz

33 Nz

90 \ozoz
Yovoz

4%& 8 “azoz
. yaroz

808 \

BoL

ot
FNMI0A FDVHOLS

US 9,223,793 B1

Sheet 5 0of 13

Dec. 29, 2015

U.S. Patent

~{L4X NOISHIA) 90¢ s DONOISYIA)
T4 HILSYIN NOISHIA L (374 H3LSVI NOISHIA
T) ,
u w FESOLYEOX A a0 “~gzzz
w w DGLELD0HXD £l 30 Npzzz
w w YACBYPEAXD 154 gd Ne~gzzz
g9 “N~gzzz LEELOPOXD ze YW N~yzzz
\ ZETH0 HOX \
arzz A A
{1 +X NOISHIA) (X NOISHIA)
T4 JYH NOISHIA T YN NOISHIA
P
i | I € | ON~gzLZ
(1 +X NOISHIA) m w (v | Wh~gz42
I WAININT NS i M | b WN~gzie
C “ ! € | Wroztz
f ¢ | Wowyzez ¢ | WN~gziz
me qy0z ¢ 1 Y wozse b | WN-~wzez

\ mmﬂ

grie

0t
FDVAUCLS YOO

volZ

{1 + X NOISHIA}
N4 INIWNOOT
ag N~gzoe
Yavoz
33 MNgzoz
32 Nozoz
Yovoz
%Nom% g9 ~N~gzor
Yavoz
801
Gt
INNTOA FOVHOLS

US 9,223,793 B1

Sheet 6 of 13

Dec. 29, 2015

U.S. Patent

ad¢ "‘DiId
{14% NOISYEA) 908 211N (X NOISYIA)
I LSV NOISHIA f (34 H3LSVA NOISHIA
! J
| | IHIOLYENG | 42 g SN~gzzz
] |
m | D0L6L0D04%0 Bi 30 Nozez
m |
m | VAL OYPELXD i gd N~gzze
g8 ~N~grzz ELBELOFOXD Z& YW Neyzze
\ Z6-0M0 HOX .\;
arie vrez
(14X NOISHIA} (% NOISHIA
T4 VI NOISHIA T4 VA NOISHIA
F—
i i | € Ovy~gz12
{1 +X NOISHIA) ot LRk - r4%4
TS TININT NS Pl b WNgziz
m..i.........J m::u::m E | Woazte
| ¢ | Wywziz C | WN~gziz
mﬁv gyoz ¢ 1 O¥~oz1z b Nz
aviz g012 voiLZ
0zt
IOVHOLS VOO

{1 + X NOISHIA)
T4 ININNDOA
ag “Y~3eoz
Yavoz
I3 Nz0z
32 MNrozoz
4 ,%ﬁ_u Yovoz
88 “gzoz
}gproe
801
133
JRNTOA IOVHOLS

US 9,223,793 B1

Sheet 7 of 13

Dec. 29, 2015

U.S. Patent

(14X NOISHIA) 90¢ ¥os X NOISYEA)
I HI1 SV NOISHIA N (34 HILSVIN NOISH3A
1 1
ga N~gzzz JE00LVSR0 | 22 ad N~gzzz
3 N~gziz J0L6/004%0 &t 399 N~ozez
20 Neazzz VAEOYRE) iy g8 N~gzzz
g0 NgIZIT CLEEEOPIXD 28 Y NAYZZZ
\ ZE080 HOX \
gree (14X NOISHIA) vrez
T4 dVYIN NOISHIA (X NOISHIN)
v | W~pziz T YN NOISHIA

£ 1 ON~z12 ¢ 1 Oy~zL2

(14X NOISHIA) 5 | W~yziz ¥ | Wangzsz

T4 WAININTIdNS ¢ 1 WN~przLz b AN~gziz

aroz ¢ 10y~ 2z £ I WN~ozLz

or0z ¢ L Wy~Hziz ¢ | W~gziz

}avroz ¢ 1 0y~oziz AN g 74T

aree 012 voLz
G¢1
IEVH0LS WO

{1 + X NOISHIA}
T4 INFAND0C
mdmtm ad N~3zoz
yavoz
EERA N (414
30 N~ozoz
Yovoz
84 “Nrgzoez
ygpoz
804
ot
IRNIOA FDVHOLS

US 9,223,793 B1

Sheet 8 of 13

Dec. 29, 2015

U.S. Patent

(14X NOISHZA)
I3 WINIWTTddNS
aroz
2802
1 aroe

A

grie

(¥ NOISHIA)
I3 WAINIWT ddNS

===l
A

4 HAL5WH

43 Yygzzz

g “gzze

o0 “ypeze

89 ygzzz

W Nweze

VoL \
{1+ NOISYIA) 44

A4 YN NOISHEA Ix NOISHIA)
7 | Wpyzsz 314 YN NOISYIA
1Oy~ T2Lz £} Oy~gzi2
¢ | NN~wzLz v ANz
E W~ rziz b iN~azz
E1ON~jz12 ¢ W0z
¢ | WN~pziz ¢ | WN~gziz
¢ | Q¥~ozLz b Wiz

80LZ Yoiz

441
ASYHOLS 3LOWTY

v OId

{143 NOISHIA)
A4 HALSYN NOISHEA

ad N~geez

FH azzz

30 Nrozzz

g4 N~gzzz

A

gree

{1+% NOISHIA)

4 YN NOISHIA

v WN~wziz
~ 7212
WN~wmzi12
WN~rziz
-~ jZ1Z
MN~pziz
dy~oziz

&3
£
&

o fogfey fox |
£
i

A

g0i2

143
3DYHOLS W0

{1 + X NOISHIA)
T4 INBNNO0A
04 “~geoe
Yaroz
I Nzoz
20 N~ogoz
Yoroz
88 “gzoz
yaroz
804
iTa
JRNIOA IEVHOLS

US 9,223,793 B1

Sheet 9 of 13

Dec. 29, 2015

U.S. Patent

{1+ X NOISHIN
314 030183y

Fz02t -

.....

aroz{ o

HZ0277 33 - mw, P

074174 SEERCORNEE B SN
oroz{ Jate”
gzoz~y 9 |

groe {

\A

zZ0%

0r
ANNTIOA FOVHOLS

.
- F 5
- 5 s
N K ;
Kd: i y
£ ¥
F +
; +
I s
. 4
. I
-, +
-
',
gk iy
5 L
Pt d T P
sn KA rp—
2 Q‘ Ol..t
~ ¥ '
v K -
- d Na
e P a
e .
- To—
ub rllt
*e
7 -
- v
\\ LT
S
i LTy,
-
ek

llllllll
s

-

iiiiii

§ O

iiiiiiii
e
e
-

;;;;;
~
;;;;;;
uuuuuuuuuuuuu

(14X NOISHIA)

A4 TWININD HANS

P

I H31SYIN

{1+ NOISHAA)
T4 Y NOISHIA

WN~mziz

43

ON~T1212

We~wzie

T ¥
o ', %
LTS
v v %
> oy %
st
*
voa f
[
[
LR T
[
s ¥
(I
1
[IE A
i %
(Y
S
;;;;;;;;
b sy V
4 ™,
ST s
P A CO
¥ R .
4 o
I [
.t
Al o Amm o] forporaceruvas m
H S
M L
PN
])
K H yenm e m
- 5 e

W~rziz

%
T
+

~,
N,
-
¥
*
i
.
x
¥
&I

N~ 1212

. ,
- ,
e Y e Z
ol S
.

WN~HZLZ

UNy~oziz

1A

&r
JOVHOLS J10M3Y

U.S. Patent Dec. 29, 2015 Sheet 10 of 13 US 9,223,793 B1

ACKUP NEW VERSION OF DATA FILE 600
TO REMOTE STORAGE

602

DE-DUPE NEW VERSION OF FILE
AGAINST PREVIOUS VERSION MASTER FILE
IN LOCAL STORAGE
{ROUTINE 700 - FIGURE 7)

¥ 604

STORE NEW VERSION MAP, NEW
SUPPLEMENTAL FILE, AND ANY NEW MASTER
BLOCKS TO REMOTE STORAGE

¢ 606
CLEANUP PREVIOUS VERSION FILES FROM
LOCAL STORAGE

v
(=™)
FIG. 6

U.S. Patent

Dec. 29, 2015 Sheet 11 of 13 US 9,223,793 B1
DE-DUPE NEW VERSION OF DATAFILE 760
AGAINST MASTER FILE
(EROM OPERATION 602 - FIGURE 6]
v 702
INTIALIZE CURRENT OFFSET TO ZERG
-
v 704
READ DATA BLOGK FROM DATA FILE AT
CURRENT OFFSET
| 740
. APPEND PARTIAL DATA BLOCK 10
} 3
FULL DATA BLOCK READ? NEW SUPPLEMENTAL EILE
708 Y 742

CALCULATE LIGHTWEIGHT CHECKSUM FOR
READ DATA BLOCK {BY ADD-ON-CARRY)

l 710

SEARCH LIGHTWEIGHT CHECKSUMS IN
MASTER FILE FOR MATCHING CHECKSUM

712

POTENTIAL

YES
MATCHING BLOCK IN MASTER

APPEND SUPPLEMENTAL BLOCK
REFERENCE FOR PARTIAL DATA
BLOCK TQ NEW VERSION MAP FILE

END

FILE?Y

714

INCREAGE CURRENT OFFSET BY
SLIDE SIZE

716 FULL
BLOCK OF DATA SKIPPED IN

~DATAFILE?
NO

YES

718

CREATE NEW MASTER BLOCK WITH
SKIPPED BLOCK GF DATA IN NEW
VERSION MASTER FILE

‘ 720

FIG. 74

APPEND MASTER BLOCK
REFERENCE FOR NEW MASTER

BLOCK TO NEW VERSION MAP FILE

U.S. Patent

Dec. 29, 2015 Sheet 12 of 13

722

CALCULATE HEAVYWEIGHT CHECKSUM
FOR DATA BLOCK

HEAVYWEIGHT

724_~THECKSUMS MATCH FOR

NO

US 9,223,793 B1

700

’)

READ DATA BLOCK AND
MATCHING MASTER
BLOCK?

726

PERFORM BYTE-BY-BYTE COMPARISON
BETWEEN READ DATA BLOCK AND
POTENTIALLY MATCHING MASTER BLOCK

NO

728 -
: _ DATA MATCHES?

YES 230
APPEND SKIPPED DATATQ NEW
SUPPLEMENTAL FILE
* 732

APPEND SUPPLEMENTAL BLOCK REFERENCE

FOR SKIPPED DATA TO NEW VERSION MAP
FILE

734

APPEND MASTER BLOCK REFERENCE FOR

MATCHING MASTER BLOCK TO NEW VERSION

MAP FILE

+ 736

SET CURRENT OFFSET TO END QF BLOCK OF

DATA IN DATAFILE

FlG. 7B

US 9,223,793 B1

Sheet 13 of 13

Dec. 29, 2015

U.S. Patent

| si
Wéoaa,_&

S
TYOUSAHd

NS
TYISAHd

A8ld

TOISAHd

VR
#sid
TYOISAHd

3 7
HATICHLINDD A
eI {8indo
PL 13SdIHO
k. -~ ~ 3
k.4 A h L
(74 7 T 74
HATIOHINGD WO MY HATIOHINOD
S&pg:mz HHOMLIIN
y %
/ \\\ L i

AHOMIIN

o

US 9,223,793 B1

1
DE-DUPLICATION OF FILES FOR
CONTINUOUS DATA PROTECTION WITH
REMOTE STORAGE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of U.S. provisional
patent application No. 61/183,746, filed on Jun. 3, 2009,
entitled “A Novel Method of De-Duplication of Files for
Remote Storage,” which is expressly incorporated herein by
reference in its entirety.

BACKGROUND

Continuous data protection (“CDP”), also called continu-
ous backup, generally refers to the backup of data on a com-
puter by automatically saving a copy of every change made to
that data. While traditional backup solutions take a snapshot
of the files or data on a computer at a specific time, CDP
essentially captures every new version of the data saved on the
computer in real-time. CDP may be performed at the file-level
or the device-level. Device-level CDP generally allows a user
or administrator to roll back the entire state of the device, such
as a disk drive, to any point in time, while file-level CDP may
allow a user to view and select a specific version of a particu-
lar data file to restore.

File-level CDP is typically implemented through a back-
ground service executing on a computer that monitors speci-
fied files and folders stored on local or remote storage vol-
umes. When a monitored data file is changed, the new,
modified version of the file is copied to one or more backup
locations, such as internal storage, an external/removable
storage device, and/or a remote storage system, such as a
LAN-based storage server or a cloud-based storage service.
While each new version of a data file may only differ from the
previous versions by a small amount, traditional file-level
CDP solutions may backup an entire copy of the modified
version of the file. As a result, a small data file stored on the
storage volume may occupy a disproportionately large
amount of space in the backup location.

When utilizing a cloud-based storage service as a backup
location, this large amount of space may make the cost of
CDP prohibitive, since many cloud-based storage services
charge a fee based on the amount of storage space utilized. It
may be desirable for the CDP process to perform de-duplica-
tion of each new version of a monitored data file against
previously stored versions in order to remove the duplicate
data before backing up the file to the cloud-based storage
service. However, de-duplication of the new version of the
data file may require a significant amount of I/O against the
previous version data stored on the cloud-based storage ser-
vice. Since many of these services also charge a fee per I/O
request or per amount of data transferred, the de-duplication
process itself may increase the overall cost of the cloud-based
storage service as a backup location.

It is with respect to these considerations and others that the
disclosure made herein is presented.

SUMMARY

Technologies are described herein for performing data de-
duplication of a version of a data file for backup to a remote
storage location. Through the utilization of the technologies
and concepts presented herein, a CDP module executing on a
computer is able to perform de-duplication of each new ver-
sion of a monitored data file against data maintained locally

10

15

20

25

30

35

40

45

50

55

60

65

2

from a previous version of the file before backing-up the
version to the remote storage, such as a cloud-based storage
service. Performing the de-duplication before backing-up
each new version of the data file allows for a minimal amount
of space to be utilized on the remote storage for each new
version, thus potentially reducing the overall cost of the CDP
process. In addition, since a new version of the data file is
likely to have more data in common with the previous version
than with older versions of the file, maintaining data locally
for the previous version allows for efficient de-duplication of
the new version, while requiring less local storage space as
compared to storing the entire version data for the data file
locally. Maintaining the previous version data locally also
allows the CDP module to perform the de-duplication with
limited I/Os to the remote storage, thus further reducing costs
associated with the CDP process.

According to one embodiment, the CDP module executing
on a computer creates a collection of files corresponding to
the new version of the data file by de-duplicating the new
version of the data file against a previous version master file
stored locally on the computer. The previous version master
file contains one or more unique data blocks of a specific
block size from the previous version of the data file. Once the
de-duplication against the locally maintained previous ver-
sion master file is complete, the CDP module stores the col-
lection of files corresponding to the new version of the data
file to the remote storage location. The remote storage also
contains a master file corresponding to the data file that con-
tains all of the unique data blocks in the previous version
master file.

It should be appreciated that the above-described subject
matter may also be implemented as a computer-controlled
apparatus, a computer process, a computing system, or an
article of manufacture, such as a computer-readable storage
medium. These and various other features will be apparent
from a reading of the following Detailed Description and a
review of the associated drawings.

This Summary is provided to introduce a selection of con-
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub-
ject matter, nor is it intended that this Summary be used to
limit the scope of the claimed subject matter. Furthermore,
the claimed subject matter is not limited to implementations
that solve any or all disadvantages noted in any part of this
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is ablock diagram showing aspects of an illustrative
operating environment, including several software compo-
nents provided by the embodiments presented herein;

FIG. 2 is a block diagram showing aspects of a mechanism
for storing a version of a data file on a remote storage backup
location, according to embodiments presented herein;

FIGS. 3A-3E are block diagrams showing aspects of a
mechanism for de-duplicating a new version of a data file
against a previous version of the file, according to embodi-
ments presented herein;

FIG. 4 is a block diagram showing aspects of a mechanism
for storing multiple versions of a data file on a remote storage
backup location, according to embodiments presented herein;

FIG. 5 is a block diagram showing a mechanism for
rebuilding a particular version of a data file from a collection
of files storing multiple versions of the file, according to
embodiments presented herein;

US 9,223,793 B1

3

FIG. 6 is a flow diagram illustrating one method for back-
ing up a new version of a data file to a remote storage backup
location, according to embodiments presented herein;

FIGS. 7A-7B are logical flow diagrams illustrating one
method for performing de-duplication of a new version of a
data file against a previous version, according to embodi-
ments presented herein; and

FIG. 8 is a computer architecture diagram illustrating a
computer hardware architecture for a computing system
capable of implementing aspects of the embodiments pre-
sented herein.

DETAILED DESCRIPTION

The following detailed description is directed to technolo-
gies for performing data de-duplication of a version of a data
file for backup to a remote storage location. While the subject
matter described herein is presented in the general context of
program modules that execute in conjunction with the execu-
tion of an operating system and application programs on a
computer system, those skilled in the art will recognize that
other implementations may be performed in combination
with other types of program modules. Generally, program
modules include routines, programs, components, data struc-
tures, and other types of structures that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the subject matter
described herein may be practiced with other computer sys-
tem configurations, including hand-held devices, multipro-
cessor systems, microprocessor-based or programmable con-
sumer electronics, minicomputers, mainframe computers,
and the like.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof and that
show, by way of illustration, specific embodiments or
examples. In the accompanying drawings, like numerals rep-
resent like elements through the several figures.

FIG. 1 shows aspects of an illustrative operating environ-
ment 100 for the embodiments described herein, including a
user computer 102. The user computer 102 may be a PC, a
desktop workstation, a laptop, a notebook, a mobile device, a
personal digital assistant (“PDA”), an application server, a
Web server hosting Web-based application programs, or any
other computing device. The user computer 102 executes
local applications 104 and an operating system (“OS”) 106
that read and write data files, such as the data file 108, stored
on a storage volume 110.

The storage volume 110 may be located on a local storage
device, such as a local hard drive, or the storage volume may
be hosted on a remote storage system, such as a SAN volume
or NAS volume accessed across a network 126 utilizing an
appropriate protocol. The local applications 104 and the OS
106 may read and write data files 108 to the storage volume
110 utilizing a locally implemented file system 112, such as
NTEFS. It will be appreciated that the local applications 104
and the operating system 106 may utilize other file system
112 protocols to access the storage volume 110, including,
but not limited to, the network file system (“NFS”) protocol,
the server message block (“SMB”) protocol, and the like.

The user computer 102 also includes a continuous data
protection (“CDP”) module 114. The CDP module 114
executes on the user computer 102 and monitors specified
files and folders on the storage volume 110 for changes in
real-time. In one embodiment, the CDP module 114 utilizes
“hooks” 116 provided by the OS 106 or the file system 112 of
the user computer 102 to be notified of changes in the speci-
fied data files 108. In another embodiment, the CDP module

10

15

20

25

30

35

40

45

50

55

60

4

114 monitors the storage volume 110 directly through the file
system 112 to detect changes to the specified data files 108.
The CDP module 114 may provide facilities that allow users
or administrators of the user computer 102 to specify which
data files 108 on the storage volume 110 to monitor. The users
or administrators may specify folder names, file names, file
types, or any other specification of files to monitor. The speci-
fication of the files to monitor may be stored in CDP configu-
ration settings 118 maintained on the user computer 102, for
example.

When a monitored data file 108 is changed on the storage
volume 110, the CDP module 114 initiates the CDP process
to backup the modified version of the file to one or more
backup locations. The backup locations may include a local
storage device 120, such as a local hard drive or tape drive,
and/or remote storage 122 provided by a remote storage sys-
tem 124 accessed across the network 126, such as a cloud-
based storage service provided over the Internet. The CDP
module 114 may further provide facilities that allow the users
or administrators of the user computer 102 to specify the one
or more backup locations for the backups, a schedule for
periodic backups ofthe current versions of the monitored data
files 108, a maximum number of versions of each data file that
are to be maintained in the backup locations, and the like.
These settings may further be stored in the CDP configuration
settings 118 described above.

According to embodiments, the CDP module 114 main-
tains a collection of files 128 A, 128B in the backup location
(s) that stores the versions of the monitored data file 108. FIG.
2 shows additional details of the collection of files 128B
utilized by the CDP module 114 to store versions of the data
file 108 to a remote storage 122 backup location, such as a
cloud-based storage service. According to one embodiment,
for each monitored data file 108, the collection of files 128B
maintained by the CDP module 114 in the remote storage 122
includes a master file 220. In addition, for each backed-up
version of the data file 108, the collection of files 128B also
includes a version map file 210A (referred to herein generally
as version map file 210) and a supplemental file 214A (re-
ferred to herein generally as supplemental file 214).

Each of the files 220, 210, 214 in the collection of files
128B may be stored in the remote storage 122 with a filename
related to the name and/or version of the corresponding data
file 108, for example. Alternatively, the files 220, 210, 214 in
the collection of files 128B may be linked to the correspond-
ing data file 108 through a mechanism other than the file-
name, such as through a catalog file. It will be appreciated that
the master file 220, version map files 210, and supplemental
files 214 may represent virtual files that are physically stored
in the remote storage 122 in a container other than files inafile
system, such as rows in a database table. It is intended that this
application include all such implementations of the collection
of files 128B.

The master file 220 is common to all versions of the cor-
responding data file 108 and contains a number of master
blocks 222A-222D (referred to herein generally as master
block 222). Each master block 222 in the master file 220
contains a unique block of data from the data file 108. Each
unique master block 222 is stored only once in the master file
220, even though the block of data may occur multiple times
in the original data file 108. For example, as shown in FIG. 2,
a version X of the data file 108 may consist of a number of
blocks of data 202A-202E of a specific block size. The block
size may be selected based on the file system 112 being
utilized to allow efficient reading and writing of data while
maximizing the de-duplication of data in the collection of
files 128B. For the NTFS file system, the block size may be

US 9,223,793 B1

5

512 bytes, corresponding to the sector size of a standard PC
hard disk. In addition, the version X of the data file 108 may
contain a chunk of data less than the block size, such as the
chunk of data 204A (referred to herein generally as chunk of
data 204), as further shown in FIG. 2.

The master file 220 corresponding to the data file 108 will
contain the unique master block 222A, corresponding to
blocks of data 202A and 202D in the data file, unique master
block 222B, corresponding to block of data 202B, unique
master block 222C corresponding to block of data 202C, and
unique master block 222D corresponding to block of data
202E. Storing only unique blocks of data from the data file
108 in the master file 220 reduces the storage space required
as compared to simply copying the version of the data file 108
to the remote storage 122. In addition, this technique provides
even greater storage space savings when storing subsequent
versions of the data file 108, as will become apparent from the
description below. The chunk of data 204 A from the data file
108 that is less than a full block of data is stored in the
supplemental file 214 A for the corresponding version X ofthe
data file.

The version map file 210 maintained for each backed-up
version of the data file 108 contains a list of references 212 A-
212F (referred to herein generally as reference 212). Each of
the references 212 is either a master block reference or a
supplemental data reference. Master block references 212, as
indicated by an “M” in the reference in FIG. 2, refer to a
specific master block 222 in the master file 220 corresponding
to the data file 108. The master block reference 212 contains
as index to the master block 222 in the master file 220.
Supplemental data references 212, as indicated by a “D” in
the reference, refer to a chunk of data 204 in the supplemental
file 214 corresponding to the version of the data file 108. The
supplemental data reference 212 contains a length of the
chunk of data 204 in the supplemental file 214. In one
embodiment, the length may represent a number of bytes of
data in the chunk of data 204.

The references 212 appear in the version map file 210 in the
order in which the corresponding master block 222 or chunk
of data 202 appear in the version of the data file 108. For
example, as shown in FIG. 2, the version map file 210A
corresponding to version X of the data file 108 contains a
master block reference 212A referring to unique master block
222A, a master block reference 212B referring to unique
master block 222B, a master block reference 212C referring
to unique master block 222C, a master block reference 212D
referring again to unique master block 222 A, a master block
reference 212F referring to unique master block 222D, and a
supplemental data reference 212F referring to the chunk of
data 204 A contained in the corresponding supplemental file
214A and consisting of 3 bytes of data.

While the users or administrators of the user computer 102
may specify that the CDP module 114 should backup new
versions of the monitored data files 108 to remote storage
122, the CDP module may retain some backup data in the
collection of files 128A on the local storage device 120.
According to embodiments, the CDP module 114 maintains
the version map file 210A and a version master file 224A
corresponding to the previous version of the data file 108, i.e.
the last backed-up version of the file, on the local storage
device 120. The previous version map file 210A and the
previous version master file 224 A may be utilized by the CDP
module 114 for performing de-duplication of data in each
new version of the data file 108 before storing the correspond-
ing version map file 210 and supplemental file 214 to the
remote storage, as will be described in more detail below in
regard to FIGS. 3A-3E, 6, and 7A-7B. Maintaining the pre-

20

25

30

40

45

6

vious version map file 210A and previous version master file
224 A corresponding to the last backed-up version of the data
file 108 allows the CDP module 114 to perform the de-
duplication with limited I/Os to the remote storage 122, thus
potentially reducing costs associated with the CDP process.

FIGS. 3A-3E show aspects of a mechanism for performing
de-duplication of data in a new version of the data file 108
against the previous version map file 210A and previous
version master file 224A corresponding to the last backed-up
version of the file. The CDP module 114 may perform the
de-duplication before backing-up the new version of the data
file 108 to the remote storage 122 in order to reduce the
amount of data usage on the remote storage, and thus poten-
tially reducing costs associated with the CDP process. As
shown in FIG. 3A, the new version X+1 of the data file 108
may consist of a chunk of data 204B consisting of two bytes,
a full block of data 202B matching the master block 222B in
the master file 220 corresponding to the data file, a chunk of
data 204C consisting of three bytes, a full block of data 202C
matching the master block 222C, a full block of data 202F not
matching any master blocks in the master file 220, another
chunk of data 204D consisting of three bytes of data, and a full
block of data 202E matching the master block 222D.

In order to backup the new version X+1 of the data file 108
to the remote storage 122, the CDP module 114 first builds a
new version map file 210B and new supplemental file 214B
corresponding the new version X+1 by performing the data
de-duplication process against the previous version master
file 224 A corresponding to the previous version X of the data
file. In one embodiment, the CDP module 114 utilizes the
method described below in regard to FIGS. 7A and 7B. The
CDP module 114 starts by reading a data block 302 of the
block size described above from the top of the data file 108.
The data block 302 is then compared against the master
blocks 222A-222D contained in the previous version master
file 224A.

According to one embodiment, the CDP module 114 main-
tains lightweight checksums 304 and heavyweight check-
sums 306 for each master block 222 in the master file 220
corresponding to the data file 108. The CDP module 114 may
maintain the lightweight checksums 304 and heavyweight
checksums 306 in a table on the local storage device 120
indexed by the corresponding master block index in the mas-
ter file 220, for example. In another embodiment, the light-
weight checksums 304 and heavyweight checksums 306 may
be calculated by the CDP module 114 for each master block
222A-222D in the previous version master file 224 A stored
on the local storage device 120 at the beginning of the CDP
process. The lightweight checksums 304 may consist of an
XOR checksum calculated for the corresponding master
block 222, while the heavyweight checksums 306 may con-
sist of 32-bit CRC checksums for the master blocks. It will be
appreciated that any checksum calculation algorithm known
in the art may be utilized by the CDP module 114 to calculate
the checksum values for the master blocks 222

In order to compare the data block 302 with the master
blocks 222A-222D contained in the previous version master
file 224 A, the CDP module 114 first calculates a lightweight
checksum value for the data block 302 and then searches the
lightweight checksums 304 for the master blocks for a match-
ing value. Ifa match is found, the CDP module 114 checks the
corresponding heavyweight checksum 306 for the candidate
master block 222 against a similarly calculated heavyweight
checksum for the data block 302. If the heavyweight check-
sums match, then the CDP module 114 finally performs a
byte-by-byte comparison between the data block 302 and the
candidate master block 222 in order to determine if the master

US 9,223,793 B1

7

block matches the data block. In another embodiment, the
CDP module 114 may check only the lightweight checksums
304, and upon finding a match, perform the byte-by-byte
comparison between the data block 302 and the candidate
master block 222.

If no matching master block 222A-222D in the previous
version master file 224 A is located for the read data block
302, then the CDP module 114 reads another data block 302
of'the block size at an offset from the top of the data file 108
equal to a slide size 308, as shown in FIG. 3B. In one embodi-
ment, the slide size 308 is one byte. It will be appreciated that
other slide sizes 308 may be utilized, and that the slide size
may be configurable by the users or administrators of the user
computer 102. The data block 302 read at the offset is again
compared to the master blocks 222A-222D contained in the
previous version master file 224A. The process is continued
until the read data block 302 matches one of the master blocks
222A-222D in the previous version master file 224A. For
example, as shown in FIG. 3C, the data block 302 containing
the block of data 202B from the new version X+1 of the data
file 108 matches the master block 222B in the previous ver-
sion master file 224A for the previous version X.

If'a matching master block 222B is found for the read data
block 302, then the CDP module 114 first appends any
skipped chunk of data 204B read before the matched data
block to the new supplemental file 214B for the new version
X+1 of the data file 108, as further shown in FIG. 3C. The
CDP module 114 then appends a corresponding supplemental
data reference 212G to the version map file 210B for the new
version X+1 of the data file 108. The supplemental data
reference 212G indicates the length of the skipped chunk of
data 204B in the supplemental file 214B as two bytes in this
example.

Next, the CDP module 114 appends a master block refer-
ence 212H to the version map file 210B for the new version
X+1 of the data file 108 indicating the matching master block
222B. According to embodiments, the index in master block
reference 212H indicates the index of the matching master
block 222B in the master file 220, not the index of the master
block 222B in the previous version master file 224A main-
tained on the local storage device 120. The CDP module 114
may determine the index of the matching master block 222B
in the master file 220 utilizing the master block reference
212B from the previous version map file 210A corresponding
to the position of the matching master block 222B in the
previous version master file 224 A, for example.

In one embodiment, the CDP module 114 also builds a new
version master file 224B for the new version X+1 of the data
file 108 during the de-duplication process by appending each
matching unique master block 222B from the previous ver-
sion master file 224 A in the order in which they are matched
to the new version X+1 of the data file. In another embodi-
ment, the CDP module 114 may build the new version master
file for version X+1 of the data file at the end of the CDP
process utilizing the current version X+1 of the data file 108
and the corresponding new version map file 210B. It will be
appreciated that, because a new version of the data file 108 is
likely to have more data in common with the previous version
than older versions of the file, maintaining a version master
file 224 A for the previous version on the local storage device
120 allows for efficient de-duplication of data in the new
version while requiring less local storage space as compared
to storing the entire master file 220 on the local storage
device. However, some master blocks 222 may eventually be
duplicated in the master file 220 as more versions of the data
file 108 are backed-up to the remote storage 122.

25

40

45

55

8

After appending the master block reference 212H for the
matching master block 222B to the version map file 210B, the
CDP module 114 then reads the next full data block 302 from
the data file 108 starting at the position at the end of the block
of data 202B that matched the master block, as is shown in
FIG. 3D. The processing of the new version X+1 of the data
file 108 continues until the entire file has been read, resulting
in the version map file 210B, supplemental file 214B, and
version master file 224B corresponding to the new version
X+1 of the data file 108 shown in FIG. 3E. Note that when a
full block of data, such as the block of data 202F, has been
skipped in the data file 108 without finding a matching master
block 222, the full block of data 202F is appended as a new
master block 222E to the version master file 224B in the
appropriate position. The new master block 222FE is further
referenced by a master block reference 212K in the version
map file 210B with an index indicating the eventual position
of the new master block in the master file 220.

Once processing ofthe new version X+1 of the data file 108
is complete, the new version map file 210B and the new
supplemental file 214B corresponding to the new version
X+1 are stored to the remote storage 122, as shown in FIG. 4.
In addition, any new master blocks 222F are appended to the
master file 220 in the remote storage 122 in the appropriate
order. The CDP module 114 further replaces the version map
file 210A and version master file 224 A for the previous ver-
sion X of the data file 108 maintained on the local storage
device 120 with the new version map file 210B and new
version master file 224B for the new version X+1 of the file.

FIG. 5 illustrates how a particular version of the data file
108 may be recovered or restored by the CDP module 114
from the corresponding collection of files 128B maintained in
the remote storage 122, according to one embodiment. In the
illustrated example, the version X+1 of the data file 108
described above is recovered from the version map file 210B
and supplemental file 214B corresponding to the version and
the master file 220 corresponding to the data file. The CDP
module 114 builds the recovered version of the data file 108
by processing the references 212G-212M in the version map
file 210B in order of their occurrence.

As shown in the figure, the CDP module 114 first appends
a two byte chunk of data 204B from the supplemental file
214B to a restored file 502, as indicated by the supplemental
data reference 212G. Then the second master block 222B
from the master file 220 is appended to the restored file 502,
as indicated by the master block reference 212H. Next, the
CDP module 114 appends a three byte chunk of data 204C
from the supplemental file 214B to the restored file 502, as
indicated by the supplemental data reference 2121. The CDP
module 114 continues in this fashion until each of the remain-
ing references 212J-212M in the version map file 210B have
been processed and the restored file 502 is complete.

Turning now to FIGS. 6-7B, additional details will be
provided regarding the embodiments presented herein for
performing data de-duplication of a version of a data file for
backup to a remote storage location. It should be appreciated
that the logical operations described herein are implemented
(1) as a sequence of computer implemented acts or program
modules running on a computing system and/or (2) as inter-
connected machine logic circuits or circuit modules within
the computing system. The implementation is a matter of
choice dependent on the performance and other requirements
of'the computing system. Accordingly, the logical operations
described herein are referred to variously as operations, struc-
tural devices, acts, or modules. These operations, structural
devices, acts, and modules may be implemented in software,
in firmware, in special purpose digital logic, and any combi-

US 9,223,793 B1

9

nation thereof. It should also be appreciated that more or
fewer operations may be performed than shown in the figures
and described herein. These operations may also be per-
formed in parallel, or in a different order than those described
herein.

FIG. 6 shows a routine 600 for backing up the current
version X+1 of a data file 108 to the remote storage 122,
according to one embodiment. The routine 600 may be
executed by the CDP module 114 on the user computer 102,
or the routine may performed by another module or a com-
bination of modules executing on the user computer 102 and
remote storage systems. In one embodiment, the routine 600
may be executed by the CDP module 114 upon detection of a
modification to a monitored data file 108 on the storage vol-
ume 110. The modification to the data file 108 may be the
result of a user of the user computer 102 saving a file within
alocal application 104, or the OS 106 modifying the filein the
course of operation, for example.

As described above in regard to FIG. 1, the CDP module
114 may detect the modification to the data file 108 by receiv-
ing a message from a hook 116 provided by the OS 106 or by
detecting the change to the file through the file system 112 on
the user computer 102. In other embodiments, the CDP mod-
ule 114 may initiate the routine 600 in response to a trigger
other than a modification to the data file 108. For example, the
CDP module 114 may backup the current version of each
monitored data file 108 on the storage volume 110 to the
remote storage 122 on a periodic basis, regardless of whether
the data file has been modified.

The routine 600 begins with operation 602, where the CDP
module 114 performs de-duplication of the data in the new
version X+1 of the data file 108 against the master file 224A
for the last backed-up version X of the data file located on the
local storage device 120. According to one embodiment, the
CDP module 114 utilizes the routine 700 described below in
regard to FIGS. 7A-7B to perform the de-duplication process.
The output of the de-duplication process may be a new ver-
sion map file 210B, a new supplemental file 214B, and a new
version master file 224B corresponding to the version X+1 of
the data file 108, as described above in regard to FIGS.
3A-3E.

From operation 602, the routine 600 proceeds to operation
604, where the CDP module 114 stores the new version map
file 210B, the new supplemental file 214B, and any new
master blocks 222F generated during the de-duplication pro-
cess of the new version X+1 of the data file 108 to the remote
storage 122, as described above in regard to FIG. 4. The
routine 600 then proceeds to operation 606, where the CDP
module 114 cleans-up the files related to the previous version
X of the data file in the collection of files 128 A maintained on
the local storage device 120. This may include replacing the
previous version map file 210A and previous version master
file 224 A maintained on the local storage device 120 with the
new version map file 210B and new version master file 224B,
as further shown above in FIG. 4. From operation 606, the
routine 600 ends.

FIGS. 7A-7B show a routine 700 for performing de-dupli-
cation of a new version X+1 of a data file 108 against the
previous version master file 224 A corresponding to the pre-
vious version X of'the file, according to one embodiment. The
routine 700 may be executed by the CDP module 114 on the
user computer 102, or the routine may performed by another
module or a combination of modules executing on the user
computer 102 and remote storage systems.

As shown in FIG. 7A, the routine 700 begins with opera-
tion 702, where the CDP module 114 initializes the current
offset to zero, indicating the CDP module 114 will begin

30

40

45

55

10

processing of the data file 108 from the top of the file. The
routine 700 then proceeds from operation 702 to operation
704, where the CDP module 114 reads the first data block 302
from the data file 108 at the current offset. From operation
704, the routine 700 proceeds to operation 706, where the
CDP module determines if a full data block 302 was read
from the data file 108, i.e. the size of the read block is not less
than the block size. If a full data block 302 was read, then the
routine 700 proceeds to operation 708, where the CDP mod-
ule 114 calculates a lightweight checksum for the read data
block 302.

As described above in regard to FIG. 3A, the CDP module
114 may utilize a simple XOR checksum calculation for the
lightweight checksum. For the first data block 302 read from
the data file 108, the CDP module 114 may be required to
compute the lightweight checksum with all bytes of the data
block. However, for subsequent data blocks 302, the light-
weight checksum value may be calculated from the previous
checksum using an add-on carry algorithm, according to one
embodiment. For example, for a slide size 308 of one byte and
a block size of 512 bytes, the CDP module 114 can calculate
the lightweight checksum value for the second data block 302
read from the data file 108 by subtracting the dropped byte
(byte 1) from the lightweight checksum value for the first data
block and then add the new byte (byte 513) from the new data
block. Utilizing the add-on carry algorithm to calculate sub-
sequent checksum values may significantly increase the per-
formance of the CDP process.

From operation 708, the routine 700 proceeds to operation
710, where the CDP module 114 searches for the calculated
checksum value in the lightweight checksums 304 main-
tained for the master blocks 222 in the previous version mas-
ter file 224A to determine if any master block potentially
matches the data block 302. If, at operation 712, no potential
matching master blocks 222 are found, the routine 700 pro-
ceeds to operation 714, where the CDP module 114 increases
the current offset by the slide size 308, as described above in
regard to FIG. 3B.

The routine 700 proceeds from operation 714 to operation
716, where the CDP module 114 determines whether a full
block of data, such as the block of data 202F shown in FIG.
3E, has been skipped in the data file 108 without finding a
matching master block 222 in the previous version master file
224A. If a full block of data, i.e. a number of bytes of data
equal to the block size, has been skipped by the CDP module
114 without finding a matching master block 222, then the
routine 700 proceeds from operation 716 to operation 718,
where the skipped block of data 202F is appended as a new
master block 222E to the new version master file 224B. The
routine 700 then proceeds to operation 720, where the CDP
module 114 appends a corresponding master block reference
212K to the new version map file 210B with an index indi-
cating the eventual position of the new master block 222F in
the master file 220 in the remote storage 122, as described
above in regard to FIG. 3E.

From operation 718, the routine 700 returns to operation
704, where the next data block 302 is read from the data file
108 at the current offset. The process continues until a master
block 222 with a lightweight checksum 304 matching the
checksum value calculated for the read data block 302 is
located, or until a data block 302 less than a full block is read.
If, at operation 712, a potentially matching master block
222B is located in the in the previous version master file
224 A, the operation proceeds to operation 722, as shown in
FIG. 7B, where the CDP module 114 calculates a heavy-
weight checksum for the read data block 302. As described

US 9,223,793 B1

11

above in regard to FIG. 3A, the CDP module 114 may utilize
a more complex 33-bit CRC checksum calculation for the
heavyweight checksum.

The routine 700 proceeds from operation 722 to operation
724, where the CDP module 114 determines whether the
heavyweight checksum value calculated for the read data
block 302 matches the heavyweight checksum 306 main-
tained for the potentially matching master block 222B, as
described above in regard to FIG. 3A. If the heavyweight
checksum value calculated for the read data block 302 does
not match the heavyweight checksum 306 maintained for the
potentially matching master block 222B, the routine 700
returns to operation 714, show in FIG. 7A, where the CDP
module 114 increases the current offset by the slide size 308
and proceeds to read the next data block 302 from the data file
108.

Use of the heavyweight checksum comparison may pro-
vide a more efficient means of verifying the similarity
between the potentially matching master block 222B and the
read data block 302 before resorting to a more costly byte-
by-byte comparison of the read data block and the master
block, thus saving CPU time. In an alternative embodiment,
the heavyweight checksum comparison operation may be
skipped, with the CDP module 114 moving to a byte-by-byte
comparison on any master block 222 having a lightweight
checksum 304 matching the lightweight checksum value cal-
culated for the read data block 302.

If the heavyweight checksum value calculated for the read
data block 302 does match the heavyweight checksum 306
maintained for the potentially matching master block 222B,
then routine 700 proceeds from operation 724 to operation
726, where the CDP module 114 performs a byte-by-byte
comparison between the read data block 302 and the poten-
tially matching master block 222B to ensure the data between
the two matches. If, at operation 728, the data doesn’t match,
the routine 700 returns to operation 714, show in FIG. 7A,
where the CDP module 114 increases the current offset by the
slide size 308 and proceeds to read the next data block 302
from the data file 108.

If the data between the read data block 302 and the poten-
tially matching master block 222B does match, then the rou-
tine 700 proceeds from operation 728 to operation 730, where
the CDP module 114 appends any skipped chunk of data
204B read before the matched block of data 202B to the new
supplemental file 214B for the new version X+1 of the data
file 108, as described above in regard to FIG. 3C. The routine
700 then proceeds from operation 730 to operation 732,
where the CDP module 114 appends a corresponding supple-
mental data reference 212G to the new version map file 210B
corresponding to the new version X+1 of the data file 108. The
supplemental data reference 212G indicates the length of the
skipped chunk of data 204B appended to the new supplemen-
tal file 214B in operation 730 above.

From operation 732, the routine 700 proceeds to operation
734, where the CDP module 114 appends a master block
reference 212H to the new version map file 210B indicating
the matching master block 222B. As described above in
regard to FIG. 3C, the index in the master block reference
212H indicates the index of the matching master block 222B
in the master file 220, not the index of the master block 222B
in the previous version master file 224 A maintained on the
local storage device 120. The CDP module 114 may deter-
mine the index of the matching master block 222B in the
master file 220 utilizing the master block reference 212B
from the previous version map file 210A corresponding to
position of the matching master block 222B in the previous
version master file 224A, for example.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

The routine 700 then proceeds to operation 736, where the
CDP module 114 sets the current offset to the end of the
matched block of data 202B read from the data file 108. From
operation 736, the routine 700 returns to operation 704, as
shown in FIG. 7A, where the CDP module 114 reads the next
data block 302 from the data file 108 at the current offset. The
process continues until a data block 302 less than a full block
is read, indicating the CDP module has processed the entire
data file. If] at operation 706, the read data block 302 is less
than a full block of data, i.e. smaller than the block size, then
the routine 700 proceeds to operation 740, where the CDP
module 114 appends the partial data block 302 to the new
supplemental file 214B. The routine 700 then proceeds to
operation 742, where the CDP module 114 appends a corre-
sponding supplemental data reference 212 to the new version
map file 210B indicating the length of the partial data block
302 appended to the new supplemental file 214B in operation
740 above. From operation 742, the routine 700 ends.

According to a further embodiment, after a specified num-
ber of versions of the data file 108 have been backed-up to the
remote storage 122 utilizing the de-duplication process
against the previous version master file 224 A described above
in regard to FIGS. 3A-3E and 7A-7B, the CDP module 114
may reset the process, such that the next version of the data
file is backed-up anew, without de-duplication against a pre-
vious version of the file. This process is referred to as refer-
enceresetting. After every specified number of versions of the
data file 108, the next version is backed-up to the collection of
files 128B maintained on the remote storage as if it was the
initial version of the file, as shown in FIG. 2 above.

In one embodiment, while no de-duplication of data
against a previous version of the data file 108 is performed,
the CDP module 114 will utilize new index numbers in master
block reference 212 to any new master blocks 222 appended
to the master file 220, in order for the master blocks previ-
ously stored in the master file to remain valid. In this way,
versions of the data file 108 backed-up before the reference
resetting was performed may still be restored from the col-
lection of files 128B maintained on the remote storage. In
further embodiments, the number of versions between refer-
ence resets may be specified by the users or administrators of
the user computer 102, and may be less than the total number
of versions of the data file 108 retained in the collection of
files 128B in the remote storage 122.

FIG. 8 and the following provide a brief, general descrip-
tion of a suitable computing environment in which the
embodiments described herein may be implemented. Those
skilled in the art will appreciate that the embodiments
described herein may be practiced with other computer sys-
tem configurations, including hand-held devices, multipro-
cessor systems, microprocessor-based or programmable con-
sumer electronics, minicomputers, mainframe computers,
and the like. The embodiments described herein may also be
practiced in distributed computing environments, where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput-
ing environment, program modules may be located in both
local and remote memory storage devices.

In particular, FIG. 8 shows an illustrative computer system
10 for the user computer 102 or other computer systems
described herein. In one illustrative embodiment, one or more
central processing units (“CPUs”) 12 operate in conjunction
with a chipset 14. The CPUs 12 are standard programmable
processors that perform arithmetic and logical operations
necessary for the operation of the computer system 10. The
CPUs 12 perform the necessary operations by transitioning
from one discrete, physical state to the next through the

US 9,223,793 B1

13

manipulation of switching elements that differentiate
between and change these states. Switching elements may
generally include electronic circuits that maintain one of two
binary states, such as flip-flops, and electronic circuits that
provide an output state based on the logical combination of
the states of one or more other switching elements, such as
logic gates. These basic switching elements may be combined
to create more complex logic circuits, including registers,
adders-subtractors, arithmetic logic units, floating-point
units, and the like.

The chipset 14 provides an interface between the CPUs 12
and the remainder of the computer system 10. The chipset 14
also provides an interface to a random access memory
(“RAM”) 16 used as the main memory in the computer sys-
tem 10. The chipset 14 also includes functionality for provid-
ing network connectivity through a network controller 26,
such as a gigabit Ethernet adapter. The network controller 26
is capable of connecting the computer system 10 to remote
storage systems 124 or other computing devices over the
network 126, as described above in regard to FIG. 1. The
network 126 may be an Ethernet or Gigabyte Ethernet LAN,
a fiber ring, a fiber star, wireless, optical, satellite, a WAN, a
MAN, the Internet, or any other network technology, topol-
ogy, protocol, or combination thereof. The network controller
26 may also connect the computer system 10 to other types of
networks and remote computing systems.

The computer system 10 may be further connected to a
number of mass storage devices, such as physical disks 20A-
20E shown in FIG. 5. The disks 20A-20E may provide the
data storage capacity required for the computer system 10 to
store data files 108 the storage volume 110 and/or the local
storage device 120, described above in regard to FIG. 1. A
disk controller 18 allows the computer system 10 to commu-
nicate with the disks 20A-20E connected to the storage node.
According to embodiments, the disks 20A-20E may be con-
nected to the computer system 10 through a bus 22 that allows
the disk controller 18 to communicate with the disk drives.
The disk controller 18 may interface with the disks 20A-20E
through a serial advanced technology attachment (“SATA™)
interface, a small computer system interface (“SCSI”), a fiber
channel (“FC”) interface, a serial attached SCSI interface, or
other standard interface for physically connecting and trans-
ferring data between computers and storage devices.

The computer system 10 may store data on the disks 20A-
20E by transforming the physical state of the disk to reflect
the information being stored. The specific transformation of
physical state may depend on various factors, in different
implementations of this description. Examples of such fac-
tors may include, but are not limited to, the technology used
to implement the storage devices, whether the storage devices
are characterized as primary or secondary storage, and the
like. For example, the computer system 10 may store data to
the disks 20A-20E by issuing instructions to the disk control-
ler 18 to alter the magnetic characteristics of particular loca-
tions within the physical disk drives. These transformations
may also include altering the physical features or character-
istics of other media types, including altering the reflective or
refractive characteristics of a particular location in an optical
storage device, or moditying the electrical characteristics of a
particular capacitor, transistor, or other discrete component in
a solid-state storage device. Other transformations of physi-
cal media are possible without departing from the scope and
spirit of the present description, with the foregoing examples
provided only to facilitate this discussion. The computer sys-
tem 10 may further read information from the physical disks
20A-20E by detecting the physical states or characteristics of
one or more particular locations within the devices.

10

20

35

40

45

14

In addition to the disks 20A-20E described above, the
computer system 10 may have access to other computer-
readable storage media to store and retrieve information, such
as program modules, data structures, or other data. It should
be appreciated by those skilled in the art that computer-
readable storage media includes volatile and non-volatile,
removable and non-removable media implemented in any
method or technology for the non-transitory storage of data
and computer-executable instructions. Computer-readable
storage media includes RAM, ROM, EPROM, EEPROM,
flash memory or other solid-state memory technology, CD-
ROM, DVD, HD-DVD, BLU-RAY, or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to store the desired information in a non-transi-
tory fashion and which can be accessed by the computer
system 10.

For example, the computer-readable storage media may
store the operating system 106 utilized to control the opera-
tion of the computer system 10. According to one embodi-
ment, the operating system 106 comprises the WINDOWS®
operating system from MICROSOFT Corporation of Red-
mond, Wash. According to further embodiments, the operat-
ing system may comprise the LINUX, UNIX, or SOLARIS
operating systems. It should be appreciated that other oper-
ating systems may also be utilized. The computer-readable
storage media may store other system or application pro-
grams, such as the local applications 104 or the CDP module
114 described above, as well as other data files utilized by the
computer system 10.

In one embodiment, the computer-readable storage
medium may be encoded with computer-executable instruc-
tions that, when loaded into the computer system 10, may
transform the computer system from a general-purpose com-
puting system into special-purpose computer capable of
implementing the embodiments described herein. The com-
puter-executable instructions may be encoded on the com-
puter-readable storage medium by altering the electrical,
optical, magnetic, or other physical characteristics of particu-
lar locations within the media. These computer-executable
instructions transform the computer system 10 by specifying
how the CPUs 12 transitions between states, as described
above. According to one embodiment, the computer system
10 may have access to computer-readable storage media stor-
ing computer-executable instructions that, when executed by
the computer system, perform the routines 600 and 700 for
performing data de-duplication of a version of a data file for
backup to a remote storage location, described above in
regard to FIGS. 6-7B.

The chipset 14 may also provide an interface to a computer-
readable storage medium such as a ROM 24 or NVRAM for
storing a firmware that includes program code containing the
basic routines that help to start up the computer system 10 and
to transfer information between elements within the com-
puter system 10. The ROM 24 or NVRAM may also store
other software components necessary for the operation of the
computer system 10 in accordance with the embodiments
described herein.

The chipset 14 may also include or provide an interface to
an input/output controller 28. The input/output controller 28
may receive and process input from a number of input
devices, including, a mouse 30, a keyboard, a touchpad, a
touch screen, an electronic stylus, or other type of input
device. Similarly, the input/output controller 28 may provide
output to a display device 32, such as a computer monitor, a
flat-panel display, a digital projector, a printer, a plotter, or
other type of output device. It will be appreciated that the

US 9,223,793 B1

15

computer system 10 may not include all of the components
shown in FIG. 8, may include other components that are not
explicitly shown in FIG. 8, or may utilize an architecture
completely different than that shown in FIG. 8.

Based on the foregoing, it should be appreciated that tech-
nologies for performing data de-duplication of a version of a
data file for backup to a remote storage location are presented
herein. Although the subject matter presented herein has been
described in language specific to computer structural fea-
tures, methodological acts, and computer readable media, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features, acts,
or media described herein. Rather, the specific features, acts,
and mediums are disclosed as example forms of implement-
ing the claims.

The subject matter described above is provided by way of
illustration only and should not be construed as limiting.
Various modifications and changes may be made to the sub-
ject matter described herein without following the example
embodiments and applications illustrated and described, and
without departing from the true spirit and scope of the present
invention, which is set forth in the following claims.

What is claimed is:

1. A computer-implemented method of backing-up a ver-
sion of a data file to a remote storage, the method comprising
executing instructions on a computer to perform the opera-
tions of:

de-duplicating the version of the data file against a previous

version master file stored on a local storage device,
wherein the previous version master file comprises a
single instance of each of one or more unique data blocks
of a specific block size from a previous version of the
data file, and wherein de-duplicating the version of the
data file against the previous version master file com-
prises determining whether at least one block of data
from the version of the data file matches at least one of
the one or more unique data blocks of the specific size
from the previous version of the data file by:
maintaining a lightweight checksum for each of the one
or more unique data blocks in the previous version
master file, and
matching a block of data read from the version of the
data file to one of the one or more unique data blocks
in the previous version master file by calculating a
lightweight checksum value for the read block of data
and comparing the calculated lightweight checksum
value with the lightweight checksums maintained for
the one or more unique data blocks in the previous
version master file, wherein calculating the light-
weight checksum for a subsequently read block of
data from the version of the data file comprises sub-
tracting one or more bytes from the lightweight
checksum for a previously read block of data and
adding one or more bytes from the subsequently read
block of data to the lightweight checksum for the
previously read block of data;

creating a supplemental file corresponding to the version of

the data file and comprising one or more chunks of data
from the version of the data file not matching one of the
one or more unique data blocks in the previous version
master file;

creating a version map file corresponding to the version of

the data file and comprising one or more references to
unique data blocks in the previous version master file
and one or more references to chunks of data in the
supplemental file, wherein each of the one or more ref-
erences to unique data blocks in the previous version

w

10

15

20

25

30

35

40

45

50

55

60

65

16

master file comprise an index to a unique data block and
each of the one or more the references to chunks of data
in the supplemental file comprise a length of a chunk of
data; and

storing the supplemental file and the version map file cor-

responding to the version of the data file to the remote
storage, wherein the remote storage contains a master
file corresponding to the data file and comprising each of
the unique data blocks referenced in the version map file.

2. The computer-implemented method of claim 1, further
comprising executing instructions on the computer to per-
form the operations of:

appending a new unique data block to the master file cor-

responding to the data file, wherein the new unique data
block comprises data of the specific block size not
matching one of the one or more unique data blocks in
the previous version master file.

3. The computer-implemented method of claim 1, further
comprising executing instructions on the computer to per-
form the operations of:

creating a new version master file corresponding to the

version of the data file and replacing the previous ver-
sion master file stored on the local storage device with
the new version master file.

4. The computer-implemented method of claim 1, wherein
a plurality of version map files and supplemental files are
stored in the remote storage along with the master file corre-
sponding to the data file, each of the plurality of version map
files and supplemental files corresponding to individual ver-
sions of the data file.

5. The computer-implemented method of claim 4, wherein
a plurality of version map files corresponding to individual
versions of the data file contain a reference to the same unique
data block in the master file.

6. The computer-implemented method of claim 1, wherein
after a specified number of versions of the data file have been
backed-up to the remote storage, a subsequent version of the
data file is backed-up to the remote storage without de-dupli-
cating the subsequent version of the data file against the
previous version master file stored on the local storage device.

7. The computer-implemented method of claim 1, wherein
the remote storage comprises a cloud-based storage service.

8. A non-transitory computer-readable storage medium
having computer-executable instructions stored thereon for
de-duplicating a current version of a data file that, when
executed by a computer, cause the computer to:

read a first block of data of a particular block size from a

current offset in the current version of the data file;
determine if the first block of data matches one of a plural-
ity of unique data blocks contained in a previous version
master file corresponding to a previous version of the
data file, wherein the previous version master file is
stored on alocal storage device of the computer, wherein
the previous version master file comprises a single
instance of each of the plurality of unique data blocks
from the previous version of the data file, wherein deter-
mining if the first block of data matches one of the
plurality of unique data blocks contained in the previous
version master file comprises calculating a lightweight
checksum value for the first block of data and comparing
the calculated lightweight checksum value with light-
weight checksums maintained for the plurality of unique
data blocks in the previous version master file, and
wherein calculating the lightweight checksum for a sub-
sequently read block of data from the current version of
the data file comprises subtracting one or more bytes
from the lightweight checksum for a previously read

US 9,223,793 B1

17

block of data and adding one or more bytes from the
subsequently read block of data to the lightweight
checksum for the previously read block of data;

upon determining that the first block of data matches one of

the plurality of unique data blocks contained in the pre-
vious version master file, appending a reference to the
matching unique data block to a version map file corre-
sponding to the current version of the data file;

upon determining that the first block of data does not match

one of the plurality of unique data blocks contained in
the previous version master file, creating a supplemental
file corresponding to the current version of the data file
and comprising a chunk of data from the current version
of the data file not matching one of the plurality of
unique data blocks contained in the previous version
master file, appending a reference to the chunk to the
version map file and increasing the current offset by a
slide size; and

reading a next block of data of the particular block size

from the current offset in the current version of the data
file, wherein the reference to the matching unique data
block comprises an index to the matching unique data
block and the reference to the chunk comprises a length
of the chunk.

9. The non-transitory computer-readable storage medium
of claim 8, wherein the operations are repeated until all the
data in the current version of the data file have been pro-
cessed, and wherein the version map file corresponding to the
current version of the data file is then copied to a remote
storage containing a master file corresponding to the data file
and comprising each of the unique data blocks referenced in
the version map file.

10. The non-transitory computer-readable storage medium
of'claim 9, wherein a plurality of version map files are stored
in the remote storage along with the master file corresponding
to the data file, each of the plurality of version map files
corresponding to individual versions of the data file.

11. The non-transitory computer-readable storage medium
of claim 10, wherein a plurality of version map files corre-
sponding to individual versions of the data file contain a
reference to the same unique data block in the master file.

12. A system backing-up a version of a data file to a remote
storage, the system comprising a continuous data protection
(“CDP”) module executing on a user computer and config-
ured to:

create a collection of files corresponding to the version of

the data file by de-duplicating the version of the data file
against a previous version master file stored on a local
storage device of the user computer, wherein the previ-
ous version master file comprises a single instance of
each of one or more unique data blocks of a specific
block size from a previous version of the data file, and
wherein de-duplicating the version of the data file
against the previous version master file comprises deter-
mining whether at least one block of data from the ver-
sion of the data file matches at least one of the one or
more unique data blocks of the specific size from the
previous version of the data file by:

10

15

20

25

30

35

40

45

55

18

maintaining a lightweight checksum for each of the one
or more unique data blocks in the previous version
master file, and

matching a block of data read from the version of the
data file to one of the one or more unique data blocks
in the previous version master file by calculating a
lightweight checksum value for the read block of data
and comparing the calculated lightweight checksum
value with the lightweight checksums maintained for
the one or more unique data blocks in the previous
version master file, wherein calculating the light-
weight checksum for a subsequently read block of
data from the version of the data file comprises sub-
tracting one or more bytes from the lightweight
checksum for a previously read block of data and
adding one or more bytes from the subsequently read
block of data to the lightweight checksum for the
previously read block of data; and

store the collection of files corresponding to the version of

the data file to the remote storage, wherein the remote
storage contains a master file corresponding to the data
file and comprising the one or more unique data blocks
in the previous version master file, wherein the collec-
tion of file comprises:

a supplemental file corresponding to the version of the
data file and comprising one or more chunks of data
from the version of the data file not matching one of
the one or more unique data blocks in the previous
version master file; and

a version map file corresponding to the version of the
data file and comprising one or more references to
unique data blocks in the previous version master file
and one or more references to chunks of data in the
supplemental file, wherein each of the one or more
references to unique data blocks in the previous ver-
sion master file comprise an index to a unique data
block and each of the one or more the references to
chunks of data in the supplemental file comprise a
length of a chunk of data.

13. The system of claim 12, wherein the CDP module is
further configured to:

append a new unique data block to the master file corre-

sponding to the data file, wherein the new unique data

block comprises data of the specific block size not
matching one of the one or more unique data blocks in
the previous version master file.

14. The system of claim 12, wherein the CDP module is
further configured to:

create a new version master file corresponding to the ver-

sion of the data file and replacing the previous version

master file stored on the local storage device with the
new version master file.

15. The system of claim 12, wherein after a specified num-
ber of versions of the data file have been backed-up to the
remote storage, a subsequent version of the data file is
backed-up to the remote storage without de-duplicating the
subsequent version of the data file against the previous ver-
sion master file stored on the local storage device.

#* #* #* #* #*

